Online Knapsack Problem under Expected Capacity Constraint

نویسنده

  • Rahul Vaze
چکیده

Online knapsack problem is considered, where items arrive in a sequential fashion that have two attributes; value and weight. Each arriving item has to be accepted or rejected on its arrival irrevocably. The objective is to maximize the sum of the value of the accepted items such that the sum of their weights is below a budget/capacity. Conventionally a hard budget/capacity constraint is considered, for which variety of results are available. In modern applications, e.g., in wireless networks, data centres, cloud computing, etc., enforcing the capacity constraint in expectation is sufficient. With this motivation, we consider the knapsack problem with an expected capacity constraint. For the special case of knapsack problem, called the secretary problem, where the weight of each item is unity, we propose an algorithm whose probability of selecting any one of the optimal items is equal to 1 − 1/e and provide a matching lower bound. For the general knapsack problem, we propose an algorithm whose competitive ratio is shown to be 1/4e that is significantly better than the best known competitive ratio of 1/10e for the knapsack problem with the hard capacity constraint.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Online Knapsack Problems with Limited Cuts

The (offline) maximization (resp., minimization) knapsack problem is given a set of items with weights and sizes, and the capacity of a knapsack, to maximize (resp., minimize) the total weight of selected items under the constraint that the total size of the selected items is at most (resp., at least) the capacity of the knapsack. In this paper, we study online maximization and minimization kna...

متن کامل

Online Submodular Maximization Problem with Vector Packing Constraint

We consider the online vector packing problem in which we have a d dimensional knapsack and items u with weight vectors wu ∈ R+ arrive online in an arbitrary order. Upon the arrival of an item, the algorithm must decide immediately whether to discard or accept the item into the knapsack. When item u is accepted, wu(i) units of capacity on dimension i will be taken up, for each i ∈ [d]. To satis...

متن کامل

Submodular maximization with uncertain knapsack capacity

Weconsider themaximization problem of monotone submodular functions under an uncertain knapsack constraint. Specifically, the problem is discussed in the situation that the knapsack capacity is not given explicitly and can be accessed only through an oracle that answers whether or not the current solution is feasible when an item is added to the solution. Assuming that cancellation of the last ...

متن کامل

Knapsack Constrained Contextual Submodular List Prediction with Application to Multi-document Summarization

We study the problem of predicting a set or list of options under knapsack constraint. The quality of such lists are evaluated by a submodular reward function that measures both quality and diversity. Similar to DAgger (Ross et al., 2010), by a reduction to online learning, we show how to adapt two sequence prediction models to imitate greedy maximization under knapsack constraint problems: CON...

متن کامل

Maximizing expected utility over a knapsack constraint

The expected utility knapsack problem is to pick a set of items whose values are described by random variables so as to maximize the expected utility of the total value of the items picked while satisfying a constraint on the total weight of items picked. We consider the following solution approach for this problem: (i) use the sample average approximation framework to approximate the stochasti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1711.10652  شماره 

صفحات  -

تاریخ انتشار 2017